M. Math IInd year Back paper examination . Advanced Functional analysis

Answer all the 10 questions. Each question is worth 10 points.

If you are using any result proved in the class, you need to state it correctly.

- 1. Let X be a locally convex completely metrizable real topological vector space and let $A \subset X$ be a compact set. Show that the closed convex hull of A is a compact set.
- 2. Let X be a locally convex space and $Y \subset X$ be a closed proper subspace. Show that there is a non-zero $\Lambda' \in X^*$ such that $\Lambda'(Y) = 0$.
- 3. Let (X, d) be a metrizable real topological vector space. Let $T : X \to R$ be a linear map such that for any $x_n \to 0$ in X, $\{T(x_n)\}$ is a bounded sequence of real numbers. Show that ker(T) is a closed set.
- 4. State and prove the Banach-Alaoglu theorem in locally convex topological vector spaces.
- 5. Let K be a compact convex subset of a locally convex topological vector space. Let $\partial_e K$ denote the set of all extreme points of K. Let $f: K \to K$ be a continuous affine and onto map. For $k_0 \in \partial_e K$ show that $f^{-1}(k_0)$ is an extreme closed convex set.
- 6. Let X, Y be metrizable topological vector spaces and X is a complete metric space, Y is of second category. Let $\Lambda : X \to Y$ be a continuous linear onto map. Show that Y is also a complete metric space.
- 7. Let Γ denote the unit circle. Let $f : [0,1] \to \Gamma$ be a continuous map. Show that f is an extreme point of the closed unit ball of C([0,1]).
- 8. State and prove the Pettis' measurability theorem.
- 9. Let X be a Banach space and let $f : [0,1] \to X$ be a strongly measurable function. Suppose $x^* \circ f = 0$ a.e for all $x^* \in X^*$. Is it true that f = 0 a.e? Justify your answer.

10. Let K be a compact convex set in a locally convex topological vector space. Let μ be a regular Borel probability measure on K. Show that there is a $x_0 \in K$ such that $x^*(x_0) = \int_K x^* d\mu$ for all $x^* \in X^*$.